SUPPORT SERVICES BUILDING

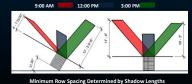
PENN STATE MILTON S. HERSHEY MEDICAL CENTER

PENN STATE AE SENIOR THESIS FINAL PRESENTATION
WILL LAZRATION
CONSTRUCTION MANAGEMENT - DR. RILEY

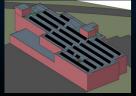
SUPPORT SERVICES BUILDING PENN STATE MILTON S. HERSHEY MEDICAL CENTER	PRESENTATION OUTLINE	WILL LAZRATION CONSTRUCTION MANAGEMENT		
	PRESENTATION OUTLINE:			
	I. PROJECT BACKGROUND II. INTRODUCTION OF ANALYSIS III. ANALYSIS#I: FOUNDATION RE-DESIGN I. Initial Conditions II. Re-Design IV. ANALYSIS#2: ROOFING I. Part I: Roofing Type Comparison II. Part II: Elimination of Offset Roof V. ANALYSIS#3: RENEWABLE ENERGY SOURCES I. Part I: Geothermal System II. Part II: Installation of PV Array I. Site Analysis II. System Design VI. SUMMARY & CONCLUSION			
	VII. ACKNOWLEDGEMENTS			

SUPPORT SERVICES BUILDING

PENN STATE MILTON S. HERSHEY MEDICAL CENTER

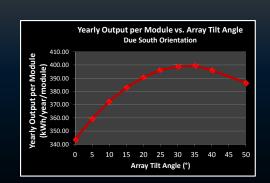

PHOTOVOLTAIC ARRAY SYSTEM DESIGN

WILL LAZRATION CONSTRUCTION MANAGEMENT


PRESENTATION OUTLINE:

- I. PROJECT BACKGROUND
- II. INTRODUCTION OF ANALYSIS
- III. ANALYSIS #1: FOUNDATION RE-DESIGN
- I. Initial Conditions
- II Po Docign
- IV. ANALYSIS #2: ROOFING
 - I. Part I: Roofing Type Comparison
 - II. Part II: Elimination of Offset Roof
- V. ANALYSIS #3: RENEWABLE ENERGY
 - I. Part I: Geothermal Systen
 - II. Part II: Installation of PV Array
 - I. Site Analysis
 - II. System Design
- VI. SUMMARY & CONCLUSION
- VII. ACKNOWLEDGEMENTS

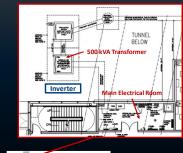
ARRAY ORIENTATION & TILT COMPARISON								
Angle	Array Orientation	Min. Row Spacing to Avoid Shading	Max # of Panels	Size of System (kW)	Average Solar Radiation (kWh/m^2/day)	Annual AC Energy (Deterate Factor of 0.8) (kWh)	kWh/ Panel/ Year	
35°	Rotated 31°	11'-10"	252	80.64	4.41	97,118	385.39	
33	Due South	9'-9"	253	80.96	4.55	101,033	399.34	
200	Rotated 31°	10'-5"	248	79.36	4.42	95,832	386.42	
30°	Due South	8'-8"	269	86.08	4.54	107,280	398.81	



Minimum Row Spacing Determined by Shadow Lengths

Rotated 31° Orientation with 35° Tilt

SUPPORT SERVICES BUILDING

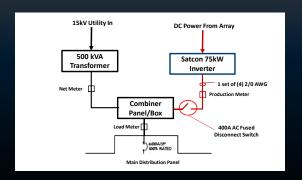

PENN STATE MILTON S. HERSHEY MEDICAL CENTER

PHOTOVOLTAIC ARRAY SYSTEM DESIGN

WILL LAZRATION CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- I. PROJECT BACKGROUND
- II. INTRODUCTION OF ANALYSIS
- III. ANALYSIS #1: FOUNDATION RE-DESIGN
- I. Initial Conditions
- II Po Docian
- IV. ANALYSIS #2: ROOFING
 - I. Part I: Roofing Type Comparison
 - II. Part II: Elimination of Offset Roof
- V. ANALYSIS #3: RENEWABLE ENERGY
 - I. Part I: Geothermal System
 - II. Part II: Installation of PV Array
 - I. Site Analysis
- VI. SUMMARY & CONCLUSION
- VII. ACKNOWLEDGEMENTS



Feed From Inverter to Combiner Panel/Box Sizing

- •Max current from inverter data sheet: 91A/phase
- •91A x 1.56 (NEC Multiplier) = 142A
- •NEC Table 310.15(B)(2)(a): Multiplier for 4-6 current carrying conductors in a raceway = 0.8
- •NEC Table 310.16 (90°C Wire): 2/0 AWG = 195A
 - 1954 v 0 9 1564 > 1/24 -> Ok

AC FUSED DISCONNECT SWITCH SIZING

- •Max current from inverter data sheet: 91A/phase
- •91A x 3 phases 1.25 (NEC Multiplier) = 342A
- •Ideal fused disconnect switch size: 350A => not available => 400A
- •Interrupt Rating must be greater than; 500kVA / (.480kV * 3^(1/2) = 600A

